资源类型

期刊论文 93

会议信息 1

会议视频 1

年份

2023 7

2022 8

2021 5

2020 7

2019 7

2018 5

2017 2

2016 3

2015 5

2014 8

2013 3

2012 6

2011 3

2010 4

2009 6

2008 7

2007 4

2006 2

2003 1

2002 1

展开 ︾

关键词

单边直线感应电机 2

永磁同步电机 2

电动汽车 2

Halbach阵列 1

Hilare 机器人 1

IFOC 1

LMS 1

Z源逆变器 1

三相异步电机 1

上限法 1

交交变频 1

交流永磁同步电机;滑模控制器;扩张状态观测器;鲁棒控制;运动控制 1

交流调速 1

交直交变频 1

仿真计算 1

伺服驱动 1

共模电流;电缆模型;电机驱动系统;参数提取 1

加窗 1

动车组 1

展开 ︾

检索范围:

排序: 展示方式:

Linear ultrasonic motor using quadrate plate transducer

Jiamei JIN, Chunsheng ZHAO

《机械工程前沿(英文)》 2009年 第4卷 第1期   页码 88-91 doi: 10.1007/s11465-009-0016-y

摘要: A linear ultrasonic motor using a quadrate plate transducer was developed for precision positioning. This motor consists of two pairs of Pb(Zr,Ti)O piezoelectric ceramic elements, which are piezoelectrically excited into the second-bending mode of the motor stator’s neutral surface in two orthogonal directions, on which the tops of four projections move along an elliptical trajectory, which in turn drives a contacted slider into linear motion via frictional forces. The coincident frequency of the stator is easily obtained for its coincident characteristic dimension in two orthogonal directions. The performance characteristics achieved by the motor are: 1) a maximum linear speed of more than 60 mm/s; 2) a stroke of more than150 mm; 3) a driving force of more than 5.0 N; and 4) a response time of about 2 ms.

关键词: ultrasonic motor     quadrate plate     coincident frequency     alternant contact    

面向21世纪的超声电机技术

赵淳生

《中国工程科学》 2002年 第4卷 第2期   页码 86-91

摘要:

叙述了新型微特电机——超声电机的特点,回顾了20世纪末期超声电机的发展和应用情况,介绍了南京航空航天大学超声电机研究中心在超声电机研究方面的进展,预测了21世纪国内外市场对超声电机技术的需求,列举了超声电机技术在我国国防和国民经济各部门的应用前景,指出了超声电机技术的发展趋势,针对我国超声电机技术开发和研究的现状,提出了为发展我国超声电机技术亟需解决的若干关键问题。

关键词: 超声电机     压电陶瓷     摩擦材料    

Modal disturbance investigation of rod-shaped ultrasonic motor using bending vibrations

ZHANG Jiantao, ZHU Hua, ZHAO Chunsheng

《机械工程前沿(英文)》 2008年 第3卷 第3期   页码 343-347 doi: 10.1007/s11465-008-0058-6

摘要: Modal disturbance of a rod-shaped ultrasonic motor using bending vibrations can cause problems such as low motor efficiency, instability, and poor control. In this paper, a dynamic analysis model of a stator is created on the basis of the finite element method (FEM) and Hamilton principle. The modal frequency sensitivities of the stator to the structure parameters are investigated by modal analysis. Accordingly, the structure parameters of the stator are modified to separate working modes from disturbance modes. A rod-shaped ultrasonic motor stator is fabricated, and the experimental results of its amplitude frequency response characteristics show that the purpose of modal separation is achieved. The frequency separation between working modes and disturbance modes is more than 2 kHz. The validity of the method is verified.

关键词: Hamilton principle     disturbance     separation     frequency separation     dynamic analysis    

Improving the performances of ultrasonic motors using intermittent contact scheme

Jiamei JIN, Jianhui ZHANG, Fu QIAN, Zhenfeng PAN,

《机械工程前沿(英文)》 2010年 第5卷 第2期   页码 242-246 doi: 10.1007/s11465-010-0016-y

摘要: Most ultrasonic motors operate in intermittent contact scheme. Their stators drive the rotors (or sliders) when the stators contact the rotors, and the rotors (or sliders) move under an inertia force when the stators and the rotors are separated. The duty cycle of the contact and the “flight” manages motors’ output performance. To obtain a large output force or output velocity, this paper proposes a concept using the alternative work of a multi-stator or the multi-driving end of a single stator. The method can avoid larger noise, poor efficiency, and lifetime of motors. A novel linear ultrasonic motor using the alternative work of the multi-driving end of a single stator was fabricated and investigated experimentally. The traveling speed without load of the slider is 88 mm/s, and the maximum load is 0.32 N.

关键词: ultrasonic motor     intermittent contact     alternative work    

Ultrasonic linear motor using the L-B mode Langevin transducer with an exponential horn

SHI Shengjun, CHEN Weishan, LIU Junkao, ZHAO Xuetao

《机械工程前沿(英文)》 2008年 第3卷 第2期   页码 212-217 doi: 10.1007/s11465-008-0026-1

摘要: An ultrasonic linear motor is proposed and fabricated by using the longitudinal and bending vibration double mode bolt-clamped Langevin type transducer to meet high power and speed requirements in the aerospace and semiconductor ind

关键词: longitudinal     vibration     bolt-clamped     semiconductor     ultrasonic    

Analysis and control of micro-stepping characteristics of ultrasonic motor

Ning CHEN, Jieji ZHENG, Xianliang JIANG, Shixun FAN, Dapeng FAN

《机械工程前沿(英文)》 2020年 第15卷 第4期   页码 585-599 doi: 10.1007/s11465-019-0577-3

摘要: Micro-stepping motion of ultrasonic motors satisfies biomedical applications, such as cell operation and nuclear magnetic resonance, which require a precise compact-structure non-magnetization positioning device. When the pulse number is relatively small, the stopping characteristics have a non-negligible effect on the entire stepwise process. However, few studies have been conducted to show the rule of the open-loop stepwise motion, especially the shutdown stage. In this study, the modal differences of the shutdown stage are found connected with amplitude and velocity at the turn-off instant. Changes of the length in the contact area and driving zone as well as the input currents, vibration states, output torque, and axial pressure are derived by a simulation model to further explore the rules. The speed curves and vibration results in functions of different pulse numbers are compared, and the stepwise motion can be described by a two-stage two-order transfer function. A test workbench based on the Field Programmable Gate Array is built for acquiring the speed, currents, and feedback voltages of the startup–shutdown stage accurately with the help of its excellent synchronization performances. Therefore, stator vibration, rotor velocity, and terminal displacements under different pulse numbers can be compared. Moreover, the two-stage two-order model is identified on the stepwise speed curves, and the fitness over 85% between the simulation and test verifies the model availability. Finally, with the optimization of the pulse number, the motor achieves 3.3 µrad in clockwise and counterclockwise direction.

关键词: ultrasonic motor     stepping characteristics     pulse number control     synchronous acquisition system     precise positioning    

density measurement for plastic injection molding via ultrasonic technology

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0714-2

摘要: Density variation during the injection molding process directly reflects the state of plastic melt and contains valuable information for process monitoring and optimization. Therefore, in-situ density measurement is of great interest and has significant application value. The existing methods, such as pressure−volume−temperature (PVT) method, have the shortages of time-delay and high cost of sensors. This study is the first to propose an in-situ density measurement method using ultrasonic technology. The analyses of the time-domain and frequency-domain signals are combined in the proposed method. The ultrasonic velocity is obtained from the time-domain signals, and the acoustic impedance is computed through a full-spectral analysis of the frequency-domain signals. Experiments with different process conditions are conducted, including different melt temperature, injection speed, material, and mold structure. Results show that the proposed method has good agreement with the PVT method. The proposed method has the advantages of in-situ measurement, non-destructive, high accuracy, low cost, and is of great application value for the injection molding industry.

关键词: ultrasonic measurement     melt density     in-situ measurement     injection molding    

Postprocessor development for ultrasonic cutting of honeycomb core curved surface with a straight blade

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0729-8

摘要: When ultrasonically cutting honeycomb core curved parts, the tool face of the straight blade must be along the curved surface’s tangent direction at all times to ensure high-quality machining of the curved surface. However, given that the straight blade is a nonstandard tool, the existing computer-aided manufacturing technology cannot directly realize the above action requirement. To solve this problem, this paper proposed an algorithm for extracting a straight blade real-time tool face vector from a 5-axis milling automatically programmed tool location file, which can realize the tool location point and tool axis vector conversion from the flat end mill to the straight blade. At the same time, for the multi-solution problem of the rotation axis, the dependent axis rotation minimization algorithm was introduced, and the spindle rotation algorithm was proposed for the tool edge orientation problem when the straight blade is used to machine the curved part. Finally, on the basis of the MATLAB platform, the dependent axis rotation minimization algorithm and spindle rotation algorithm were integrated and compiled, and the straight blade ultrasonic cutting honeycomb core postprocessor was then developed. The model of the machine tool and the definition of the straight blade were conducted in the VERICUT simulation software, and the simulation machining of the equivalent entity of the honeycomb core can then be realized. The correctness of the numerical control program generated by the postprocessor was verified by machining and accuracy testing of the two designed features. Observation and analysis of the simulation and experiment indicate that the tool pose is the same under each working condition, and the workpieces obtained by machining also meet the corresponding accuracy requirements. Therefore, the postprocessor developed in this paper can be well adapted to the honeycomb core ultrasonic cutting machine tool and realize high-quality and high-efficient machining of honeycomb core composites.

关键词: honeycomb core     straight blade     ultrasonic cutting     tool pose     postprocessor    

Vibration characteristics and machining performance of a novel perforated ultrasonic vibration platform

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0730-2

摘要: Ultrasonic vibration-assisted grinding (UVAG) is an advanced hybrid process for the precision machining of difficult-to-cut materials. The resonator is a critical part of the UVAG system. Its performance considerably influences the vibration amplitude and resonant frequency. In this work, a novel perforated ultrasonic vibration platform resonator was developed for UVAG. The holes were evenly arranged at the top and side surfaces of the vibration platform to improve the vibration characteristics. A modified apparent elasticity method (AEM) was proposed to reveal the influence of holes on the vibration mode. The performance of the vibration platform was evaluated by the vibration tests and UVAG experiments of particulate-reinforced titanium matrix composites. Results indicate that the reasonable distribution of holes helps improve the resonant frequency and vibration mode. The modified AEM, the finite element method, and the vibration tests show a high degree of consistency for developing the perforated ultrasonic vibration platform with a maximum frequency error of 3%. The employment of ultrasonic vibration reduces the grinding force by 36% at most, thereby decreasing the machined surface defects, such as voids, cracks, and burnout.

关键词: ultrasonic vibration-assisted grinding     perforated ultrasonic vibration platform     vibration characteristics     apparent elasticity method     grinding force     surface integrity    

Design and analysis of linear oscillating motor for linear pump application-magnetic field, dynamics

Zongxia JIAO,Tianyi WANG,Liang YAN

《机械工程前沿(英文)》 2016年 第11卷 第4期   页码 351-362 doi: 10.1007/s11465-016-0407-9

摘要:

A linear oscillating motor is an electromagnetic actuator that can achieve short-stroke reciprocating movement directly without auxiliary transmission mechanisms. It has been widely used in linear pump applications as the source of power and motion. However, because of the demand of high power density in a linear actuation system, the performance of linear oscillating motors has been the focus of studies and deserves further research for high power density. In this paper, a general framework of linear oscillating motor design and optimization is addressed in detail, including the electromagnetic, dynamics, and thermal aspects. First, the electromagnetic and dynamics characteristics are modeled to reveal the principle for optimization. Then, optimization and analysis on magnetic structure, resonant system, and thermal features are conducted, which provide the foundation for prototype development. Finally, experimental results are provided for validation. As a whole, this process offers complete guidance for high power density linear oscillating motors in linear pump applications.

关键词: linear oscillating motor     linear pump     magnetic field     motor optimization    

Design of ultrasonic elliptical vibration cutting system for tungsten heavy alloy

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0715-1

摘要: Nanoscale surface roughness of tungsten heavy alloy components is required in the nuclear industry and precision instruments. In this study, a high-performance ultrasonic elliptical vibration cutting (UEVC) system is developed to solve the precision machining problem of tungsten heavy alloy. A new design method of stepped bending vibration horn based on Timoshenko’s theory is first proposed, and its design process is greatly simplified. The arrangement and working principle of piezoelectric transducers on the ultrasonic vibrator using the fifth resonant mode of bending are analyzed to realize the dual-bending vibration modes. A cutting tool is installed at the end of the ultrasonic vibration unit to output the ultrasonic elliptical vibration locus, which is verified by finite element method. The vibration unit can display different three-degree-of-freedom (3-DOF) UEVC characteristics by adjusting the corresponding position of the unit and workpiece. A dual-channel ultrasonic power supply is developed to excite the ultrasonic vibration unit, which makes the UEVC system present the resonant frequency of 41 kHz and the maximum amplitude of 14.2 μm. Different microtopography and surface roughness are obtained by the cutting experiments of tungsten heavy alloy hemispherical workpiece with the UEVC system, which validates the proposed design’s technical capability and provides optimization basis for further improving the machining quality of the curved surface components of tungsten heavy alloy.

关键词: tungsten heavy alloy     ultrasonic elliptical vibration cutting     Timoshenko’s theory     resonant mode of bending     finite element method    

Investigation on a cylindrical ultrasonic micromotor

ZHU Hua, CHEN Chao, ZHAO Chunsheng

《机械工程前沿(英文)》 2007年 第2卷 第4期   页码 394-398 doi: 10.1007/s11465-007-0068-9

摘要: The relationship between the arrangement of ceramics and the force coefficient shows that the maximum excitation efficiency will be obtained when the ceramics are placed at the trough of the first bending mode of the stator. Therefore, a cylindrical ultrasonic micromotor with a novel stator is proposed. The prototype motor is 5 mm in diameter, 30 mm in length and 4.2 g in weight. The micromotor operates with the first bending mode at 53 kHz. Its maximum speed is 350 r/min when the drive voltage is 200 V and the stall torque reaches 2.5 mN · m. As this motor is suitable for miniaturization because of its simple structure, another cylindrical ultrasonic micromotor is developed. Piezoelectric ceramic tube is used as its stator. This micromtor is 2 mm in diameter, 7 mm in length and 0.258 g in weight. Its speed reaches 813 r/min when the drive voltage is 60 V at 75 kHz. The operation mechanism, structure and design method of these two motors are introduced.

关键词: coefficient     bending     kHz     suitable     weight    

Machinability of ultrasonic vibration-assisted micro-grinding in biological bone using nanolubricant

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0717-z

摘要: Bone grinding is an essential and vital procedure in most surgical operations. Currently, the insufficient cooling capacity of dry grinding, poor visibility of drip irrigation surgery area, and large grinding force leading to high grinding temperature are the technical bottlenecks of micro-grinding. A new micro-grinding process called ultrasonic vibration-assisted nanoparticle jet mist cooling (U-NJMC) is innovatively proposed to solve the technical problem. It combines the advantages of ultrasonic vibration (UV) and nanoparticle jet mist cooling (NJMC). Notwithstanding, the combined effect of multi parameter collaborative of U-NJMC on cooling has not been investigated. The grinding force, friction coefficient, specific grinding energy, and grinding temperature under dry, drip irrigation, UV, minimum quantity lubrication (MQL), NJMC, and U-NJMC micro-grinding were compared and analyzed. Results showed that the minimum normal grinding force and tangential grinding force of U-NJMC micro-grinding were 1.39 and 0.32 N, which were 75.1% and 82.9% less than those in dry grinding, respectively. The minimum friction coefficient and specific grinding energy were achieved using U-NJMC. Compared with dry, drip, UV, MQL, and NJMC grinding, the friction coefficient of U-NJMC was decreased by 31.3%, 17.0%, 19.0%, 9.8%, and 12.5%, respectively, and the specific grinding energy was decreased by 83.0%, 72.7%, 77.8%, 52.3%, and 64.7%, respectively. Compared with UV or NJMC alone, the grinding temperature of U-NJMC was decreased by 33.5% and 10.0%, respectively. These results showed that U-NJMC provides a novel approach for clinical surgical micro-grinding of biological bone.

关键词: micro-grinding     biological bone     ultrasonic vibration (UV)     nanoparticle jet mist cooling (NJMC)     grinding force     grinding temperature    

modified neural learning algorithm for online rotor resistance estimation in vector controlled induction motor

A. CHITRA,S. HIMAVATHI

《能源前沿(英文)》 2015年 第9卷 第1期   页码 22-30 doi: 10.1007/s11708-014-0339-1

摘要: Online estimation of rotor resistance is essential for high performance vector controlled drives. In this paper, a novel modified neural algorithm has been identified for the online estimation of rotor resistance. Neural based estimators are now receiving active consideration as they have a number of advantages over conventional techniques. The training algorithm of the neural network determines its learning speed, stability, weight convergence, accuracy of estimation, speed of tracking and ease of implementation. In this paper, the neural estimator has been studied with conventional and proposed learning algorithms. The sensitivity of the rotor resistance change has been tested for a wide range of variation from -50% to+50% on the stability of the drive system with and without estimator. It is quiet appealing to settle with optimal estimation time and error for the viable realization. The study is conducted extensively for estimation and tracking. The proposed learning algorithm is found to exhibit good estimation and tracking capabilities. Besides, it reduces computational complexity and, hence, more feasible for practical digital implementation.

关键词: neural networks     back propagation (BP)     rotor resistance estimators     vector control     induction motor    

Effects of inclination angles of disc cutter on machining quality of Nomex honeycomb core in ultrasonic

Yidan WANG, Renke KANG, Yan QIN, Qian MENG, Zhigang DONG

《机械工程前沿(英文)》 2021年 第16卷 第2期   页码 285-297 doi: 10.1007/s11465-021-0631-9

摘要: Ultrasonic cutting with a disc cutter is an advanced machining method for the high-quality processing of Nomex honeycomb core. The machining quality is influenced by ultrasonic cutting parameters, as well as tool orientations, which are determined by the multi-axis machining requirements and the angle control of the cutting system. However, in existing research, the effect of the disc cutter orientation on the machining quality has not been studied in depth, and practical guidance for the use of disc cutters is lacking. In this work, the inclined ultrasonic cutting process with a disc cutter was analyzed, and cutting experiments with different inclination angles were conducted. The theoretical residual height models of the honeycomb core, as a result of the lead and tilt angles, were established and verified with the results obtained by a linear laser displacement sensor. Research shows that the residual height of the honeycomb core, as a result of the tilt angle, is much larger than that as a result of the lead angle. Furthermore, the tearing of the cell wall on the machined surface was observed, and the effects of the ultrasonic vibration, lead angle, and tilt angle on the tear rate and tear length of the cell wall were studied. Experimental results revealed that ultrasonic vibration can effectively decrease the tearing of the cell wall and improve the machining quality. Changes in the tilt angle have less effect than changes in the lead angle on the tearing of the cell wall. The determination of inclination angles should consider the actual processing requirements for the residual height and the machining quality of the cell wall. This study investigates the influence of the inclination angles of a disc cutter on the machining quality of Nomex honeycomb core in ultrasonic cutting and provides guidelines for machining.

关键词: Nomex honeycomb core     disc cutter     inclined ultrasonic cutting     machining quality    

标题 作者 时间 类型 操作

Linear ultrasonic motor using quadrate plate transducer

Jiamei JIN, Chunsheng ZHAO

期刊论文

面向21世纪的超声电机技术

赵淳生

期刊论文

Modal disturbance investigation of rod-shaped ultrasonic motor using bending vibrations

ZHANG Jiantao, ZHU Hua, ZHAO Chunsheng

期刊论文

Improving the performances of ultrasonic motors using intermittent contact scheme

Jiamei JIN, Jianhui ZHANG, Fu QIAN, Zhenfeng PAN,

期刊论文

Ultrasonic linear motor using the L-B mode Langevin transducer with an exponential horn

SHI Shengjun, CHEN Weishan, LIU Junkao, ZHAO Xuetao

期刊论文

Analysis and control of micro-stepping characteristics of ultrasonic motor

Ning CHEN, Jieji ZHENG, Xianliang JIANG, Shixun FAN, Dapeng FAN

期刊论文

density measurement for plastic injection molding via ultrasonic technology

期刊论文

Postprocessor development for ultrasonic cutting of honeycomb core curved surface with a straight blade

期刊论文

Vibration characteristics and machining performance of a novel perforated ultrasonic vibration platform

期刊论文

Design and analysis of linear oscillating motor for linear pump application-magnetic field, dynamics

Zongxia JIAO,Tianyi WANG,Liang YAN

期刊论文

Design of ultrasonic elliptical vibration cutting system for tungsten heavy alloy

期刊论文

Investigation on a cylindrical ultrasonic micromotor

ZHU Hua, CHEN Chao, ZHAO Chunsheng

期刊论文

Machinability of ultrasonic vibration-assisted micro-grinding in biological bone using nanolubricant

期刊论文

modified neural learning algorithm for online rotor resistance estimation in vector controlled induction motor

A. CHITRA,S. HIMAVATHI

期刊论文

Effects of inclination angles of disc cutter on machining quality of Nomex honeycomb core in ultrasonic

Yidan WANG, Renke KANG, Yan QIN, Qian MENG, Zhigang DONG

期刊论文